我們在一些事情上受到啟發(fā)后,應(yīng)該馬上記錄下來,寫一篇心得體會,這樣我們可以養(yǎng)成良好的總結(jié)方法。優(yōu)質(zhì)的心得體會該怎么樣去寫呢?下面我給大家整理了一些心得體會范文,希望能夠幫助到大家。
考研數(shù)學講座心得體會篇一
第二,在學習概率論與數(shù)理統(tǒng)計的時候不要一頭扎入古典概型的概率計算中不可自拔。概率論的第一部分就是關(guān)于古典概型與幾何概型的計算問題,有很多問題是很復雜的,一旦陷入這一類問題的題海中,要么你的腦瓜會越來越聰明,要么打擊你的信心,對概率論失去興趣。一般同學都會處于后一種狀態(tài)。那么怎么辦呢?請轉(zhuǎn)閱第二條。
第三,在心理上重視??佳袛?shù)學試題中有關(guān)概率論與數(shù)理統(tǒng)計的題目對大多數(shù)考生來說有一定難度,這就使得很多考完試的同學感慨萬千,概率題太難了!同時也為學弟學妹們傳達了概率題目難的信息。所以同學們在復習之前就已經(jīng)有了先入為主的看法:概率比較難!但同學們沒有注意到,在自己復習之初做得準備都是關(guān)于高等數(shù)學(微積分)的,在概率上的時間本身就不足。而且如果你的潛意識中覺得一件事情難的話,那么那件事情對你來說就真的很難。人的潛力是非常巨大的,這也與“有多少想法,就有多大成就”的說法相合。如果你相信自己,那么概率復習起來是簡單的,考試中有關(guān)概率的題目也是容易的,數(shù)學滿分不是沒有可能的。那么,從現(xiàn)在開始,在心理上告訴自己:概率并不難!
中值定理包括費馬引理、羅爾定理、拉格朗日定理、格西中值定理、泰勒中值定理,這四個定理之間的聯(lián)和區(qū)別要弄清楚,羅爾定理是拉格朗日中值定理的特殊情況。除泰勒定理外的三個定理都要求已知函數(shù)在某個閉區(qū)間上連續(xù),對應(yīng)開區(qū)間內(nèi)可導。柯西中值定理涉及到兩個函數(shù),在分母上的那個函數(shù)的一階導在定義域上要求不為零,柯西中值定理還有一個重要應(yīng)用——洛必達法則,在求極限時會經(jīng)常用到。而且同學們需要掌握的不單單是這五個中值定理,而且關(guān)于他們本身的證明也是需要重點掌握的,尤其是費馬引理、羅爾定理、拉格朗日定理、格西定理的證明過程,這個過程在教科書上都有證明的過程,同學們需要自己把這個都完全能夠掌握,不僅僅是因為在09年的真題考查過這個的證明,而是這幾個的證明思想是之后類似題目證明反復使用的。而閉區(qū)間上的連續(xù)定理主要是指的最值定理、介值定理、零點存在定理。
一般來講閉區(qū)間上連續(xù)的定理是直接用的,也就是用來直接證明一些類似與存在一點在某個區(qū)間內(nèi)使得某個函數(shù)是等于零的。而中值定理的應(yīng)用一般是需要通過構(gòu)造函數(shù)的,一般來講都是三步走,第一步去構(gòu)造函數(shù),合理的去構(gòu)造函數(shù)是能夠做出這個證明題目最最關(guān)鍵的一步,而構(gòu)造函數(shù)的方法一般是通過對要求的那個等式積分得到,同時也要注意兩遍同時乘以一個函數(shù),比如同時乘以ex,因為這個函數(shù)積分是不變的,所以會有這個。構(gòu)造完成后就是第二步去檢驗條件,看是用那個定理,一般來講,如果是求一階的導數(shù)等于0優(yōu)先想到的就是羅爾定理,如果是讓你求高階的一個式子等于零或者等于某個式子,那么優(yōu)先想到的就是泰勒公式了,因為上面的五個中值定理中,只有泰勒公式是會涉及到高階的,其他的幾個都是一階,如果知道的是一階,最多也是求解二階的。第三步就是求導驗證自己求出來的是否是要求證明的結(jié)果。
1、函數(shù)必須在該點處有定義;
2、函數(shù)必須在這個點附近存在極限;
3、是前面1、2兩點的內(nèi)容必須相等,同時滿足這三個條件,才叫做函數(shù)在某點處連續(xù)。
看到,判斷函數(shù)連續(xù),要先求極限,所以,如何求函數(shù)在該點處的極限值或是用極限存在的充要條件(左右極限存在且相等),是一個隱含的知識點。
1、函數(shù)在該點處沒有定義;
2、若函數(shù)在該點有定義,但函數(shù)在該點附近的極限不存在;
3、雖然函數(shù)在該點處有定義,極限也存在,但是二者不相等。
對于間斷點,根據(jù)左右極限存在與否,我們把它分為兩類。若左右極限都存在的間斷點,稱為第一類間斷點;若左右極限相等,這個間斷點稱為第一類間斷點中的可去間斷點;若左右極限不相等,這個間斷點稱為第一類間斷點中的跳躍間斷點。若左右極限中至少有一個不存在(包含極限等于無窮的情形)的間斷點,稱為第二類間斷點;若其中一個極限是趨于無窮的,這個間斷點就稱為無窮間斷點;若極限是在兩個常數(shù)之間來回振蕩的,就稱為振蕩間斷點。
對于上面的知識點,我們看看在考研中是怎么考察的。對于連續(xù)的概念,難度上屬于簡單知識點。
首先,在十五年前,對于連續(xù)性的考查,更多的是給一個分段函數(shù),然后判斷分段點處函數(shù)的連續(xù)性,這是一個基本題型,只需判斷連續(xù)的三個條件即可,其實主要是考查求函數(shù)某點處左右極限的值。
然后,進入20世紀,考查又傾向于在選擇題當中,給一個函數(shù),讓大家來判斷這個函數(shù)有多少間斷點,間斷點的類型是什么,這個又比之前考查的更高一層。
最后,就是在邏輯推理題中,考查零點定理,介值定理,通常,考查介值定理的時候也會用到最值定理。
我們歸納題型知道,判斷方程根的情況的時候,一般用零點定理;題干中包含好幾個函數(shù)值相加的時候,一般用介值定理。具體在證明題中怎么用,我們會在專門的證明題專題中講解。
上面是對連續(xù)概念本身做出的分析。還有連續(xù)與極限存在,可導,可微的關(guān)系也是選擇題中考查的熱點,這個我們在后續(xù)一元函數(shù)導函數(shù)中詳細說明。
考研數(shù)學講座心得體會篇二
從歷年的考試題我們不難看出,在考研數(shù)學試題中70%的題目都是對基礎(chǔ)知識的考查,這就需要考生在復習過程中對基礎(chǔ)知識及解題的基本方法有足夠的重視,輔導老師建議大家要重視教材,對于教材中基礎(chǔ)例題的解題思路要非常清晰,能夠獨立完成,舉一反三。在復習過程中以明確自己知識框架和知識點的把握,題型方法的掌握是否過關(guān),從而找到自己的“短板”,推進復習進度,有側(cè)重點、有針對性進行復習,力求在有限的時間里做到事半功倍。
眾所周知,做題時考研數(shù)學復習過程中必須要經(jīng)歷的,有些同學認為只要不斷的做題,就能提高數(shù)學成績,俗不知這樣很容易勿入“題海戰(zhàn)”。新東方在線提醒大家,考研數(shù)學復習題目的數(shù)量并不是決定勝負的關(guān)鍵,關(guān)鍵在于方法,在于不斷的總結(jié)分析。為什么做相同的題目,不同的人收獲的卻大相徑庭,關(guān)鍵就在這里,事實上,無論是做教材上的習題還是歷年真題,都應(yīng)該從宏觀和微觀兩個層次上去總結(jié)分析題目的考點,歸納題目的解題方法,對于獨特的處理方法和運算技巧還需要特別的留意,解答中的關(guān)鍵點和入手點要認真琢磨是如何在題目條件中挖掘出來的。
做題練習的另一個重要的工作就是學會把題目分類。通過自己親自動手去練習大致可以把題目分成四類。
第一類:如果你學習完本章節(jié)知識內(nèi)容后,能夠輕松地將該題目解答出來,并且條理清悉,運算順利,那么將這類題目歸入第一類。這類題目對你而言已經(jīng)是真的學會并已經(jīng)掌握的題目,我們就不用在這類題目中花更多的時間和精力了,將其標注為"通過"。
第二類:如果有些題目你需要花費一定的時候(15分鐘左右)才能將其它基本解答出來,那這類題目暗示著你對其所考知識點或是入手點亦或是關(guān)鍵點不熟悉,在以后的復習中要有意的訓練自己這類知識或方法的學習。
第三類:再有些題目,如果只是依靠自己分析并花了很多時間也未能將其解答出來,但是在答案的幫助下能夠動手解答出來,那這些題目就被分為第三類。這類題目將是你進入第二階段復習是必須要攻克的目標。從而就為自己下一階段的復習明確了復習目標,找到了復習重點。
很多人都說“考研難,考研數(shù)學更難”,這樣的言論使得不少考生對考研數(shù)學產(chǎn)生畏懼心理,這直接導致在復習中就是消極應(yīng)付,以致考生在考研數(shù)學復習中不能積極準備,所以,在這里我們要提醒大家一定要保持一個良好的心態(tài),保持高昂的學習興趣,不斷的用目標刺激自己、鼓勵自己,克服懼怕心理,樹立必勝的信心,化消極被動為主動,才可以在數(shù)學的學習和解題中體會到真正的樂趣。
基礎(chǔ)是提高的前提,打好基礎(chǔ)的目的就是為了提高??忌靼谆A(chǔ)與提高的辯證關(guān)系,根據(jù)自身情況合理安排復習進度,處理好打基礎(chǔ)和提高能力兩者的關(guān)系。一般來說,基礎(chǔ)與提高是交插和分段進行的,現(xiàn)階段應(yīng)該以基礎(chǔ)為主,基礎(chǔ)扎實了,再行提高。考生在這個過程中容易遇到這樣的問題,就是感覺自已經(jīng)過基礎(chǔ)復習或一段時間的提高后幾乎不再有所進步,甚至感到越學越退步,碰到這種情況,考生千萬不要氣餒,要堅信自己的能力,只要復習方法沒有問題,就應(yīng)該堅持下去。雖然表面上感到?jīng)]有進步,但實際水平其實已經(jīng)在不知不覺中提高了,因為有這樣的想法說明考生已經(jīng)認識到了自已的不足,正處于調(diào)整和進步中。這個時候需要的就是考生的意志力,只要堅持下去,就有成功的希望。
考生在備考時還要多做例題,而不僅僅是練習題。做例題時應(yīng)遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先認真做;無論做出與否都要把自己的思路詳記于空白處,尤其是做不出的,一定把自己真實的思考方式記錄在案,留待日后分析,而不是對了答案就萬事大吉,這樣做可以迅速的找到做題的感覺。總之,考生在做題目時,要養(yǎng)成良好的做題習慣,做一個“有心人”,認真地將遇到的解答中好的或者陌生的解題思路以及自己的思考記錄下來,平時翻看,久而久之,自己的解題能力就會有所提高。
對于那些具有很強的典型性、靈活性、啟發(fā)性和綜合性的題,要特別注重解題思路和技巧的培養(yǎng)。數(shù)學試題千變?nèi)f化,其知識結(jié)構(gòu)卻基本相同,題型也相對固定,往往存在明顯的解題套路,熟練掌握后既能提高解題的針對性,又能提高解題速度和正確率。
當然,一味的靠做題來提高數(shù)學能力也是不足取的。有這樣一些考生,平時的解題能力很高,但最后的考試成績卻不是很理想,談到自己失利的原因時,他說,自己平時幾乎全部靠做題來提高水平,而對知識點缺乏更高層次上的把握和運用,導致遇到陌生的題目時,得分率嚴重下降。所以考生不能為做題而做題,要在做題時鞏固基礎(chǔ),提高自己對知識點更高層次上的把握和運用。要善于歸納總結(jié),對數(shù)學習題最好能形成自己熟悉的解題體系,也就是對各種題型都能找到相應(yīng)的解題思路,從而在最后的實考中面對陌生的'試題時能把握主動。
考研數(shù)學講座心得體會篇三
利用微分中值定理:微分中值定理在高數(shù)的證明題中是非常大的,在等式和不等式的證明中都會用到。當不等式或其適當變形中有函數(shù)值之差時,一般可考慮用拉格朗日中值定理證明。柯西中值定理是拉格朗日中值定理的一個推廣,當不等式或其適當變形中有兩個函數(shù)在兩點的函數(shù)值之差的比值時,可考慮用柯西中值定理證明。
利用定積分中值定理:該定理是在處理含有定積分的不等式證明中經(jīng)常要用到的理論,一般只要求被積函數(shù)具有連續(xù)性即可?;舅悸肥峭ㄟ^定積分中值定理消去不等式中的積分號,從而與其他項作大小的比較,進而得出證明。
除此之外,最常用的方法是左右兩邊相減構(gòu)造輔助函數(shù),若函數(shù)的最小值為0或為常數(shù),則該函數(shù)就是大于零的,從而不等式得以證明。
“懂”,首先要求同學們對考研數(shù)學的形式、考研大綱及考研用書進行全面的分析與深入的了解。這個階段,要求同學們?nèi)硇倪M行基礎(chǔ)階段的復習。這個階段同學們一定要認真細致學習課本基本知識點,弄熟定義、公式、定理及相關(guān)習題。只有打牢基礎(chǔ),才能決勝千里。最后,要求同學們做好規(guī)劃,合理安排復習,做好經(jīng)常性的總結(jié)與歸納。
數(shù)學不像英語和政治科目,能通過一定的背誦、記憶,就能取得可觀的成績。數(shù)學必須通過大量的練習,才能得到鞏固。不盲目地搞題海戰(zhàn)術(shù),要有計劃、有針對性地做題,才能將知識領(lǐng)悟得透徹。強化階段,同學們一定要利用好復習資料,做題的過程中,重點積累技巧與方法,吃透數(shù)學的知識點與題型。
經(jīng)過前期基礎(chǔ)知識的積累和做題的鞏固,同學們對知識點、練習題、真題都有了深刻的認識。這時,要做好歸納與總結(jié),構(gòu)建整體的知識結(jié)構(gòu)體系,將之前所學的知識點牢牢記憶在腦海中。充分利用知識的遷移,達到舉一反三的效果。遇到一些重點和難點題型,首先不畏懼,其次回顧之前學習的相關(guān)知識,并有效利用它們,來解決遇到的問題,最后將以往所學深深記憶在腦海中,達到“化”的境界。
1、兩個重要極限,未定式的極限、等價無窮小代換
這些小的知識點在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達法則加等價無窮小代換,特別針對數(shù)三的同學,這兒可能出大題。
2、處理連續(xù)性,可導性和可微性的關(guān)系
要求掌握各種函數(shù)的求導方法。比如隱函數(shù)求導,參數(shù)方程求導等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點。數(shù)三的同學這兒結(jié)合經(jīng)濟類的一些試題進行考察。
3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程
對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。
對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當然,這一塊對于數(shù)三的同學來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點,而且提醒大家一下,學習的時候要注意,差分方程的解題方式和微方程是相似的,學習的時候要注意這一點。
4、級數(shù)問題,主要針對數(shù)一和數(shù)三
這部分的重點是:一、常數(shù)項級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當?shù)膬缂墧?shù)來進行求和。
5、一維隨機變量函數(shù)的分布
這個要重點掌握連續(xù)性變量的這一塊。這里面有個難點,一維隨機變量函數(shù)這是一個難點,求一元隨機變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。
6、隨機變量的數(shù)字特征
要記住一維隨機變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨性考察,往往和前面的一維隨機變量函數(shù)和多維隨機變量函數(shù)和第六章的數(shù)理統(tǒng)計結(jié)合進行考察。特別針對數(shù)一的同學來說,考察矩估計和最大似然估計的時候會考察無偏性。
7、參數(shù)估計
這一點是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點,一個是矩估計,一個是最大似然估計,這兩個集中出大題。
考研數(shù)學講座心得體會篇四
考研數(shù)學強化階段,進一步加深對知識的鞏固理解以及一定的綜合運用能力,也可以檢驗同學們在基礎(chǔ)階段的學習效果。而到目前這個階段,無論是有復習基礎(chǔ)還是剛開始著手準備的同學,建議大家:圍繞考研命題形式,結(jié)合歷年真題,展開一輪重難點題型攻堅戰(zhàn)。通過這樣的備考,有復習基礎(chǔ)的同學,可以把前面的基礎(chǔ)知識更有邏輯的凝練起來,對于準備不久的同學,通過重點題型,直擊考點,更有目的性、針對性的去補習基礎(chǔ)知識。
如何利用好數(shù)學重難點精講課程,結(jié)合對應(yīng)章節(jié)的歷年真題,快速有效的打好這一重難點題型攻堅戰(zhàn),建議如下:
對考數(shù)學所有科目的知識點有一個清晰的把握,能分清重點難點,做到舉重若輕;對于任何一道考研真題,能夠辨別其考點題型,能有一個宏觀標準的解題思路,做到胸有成竹;對自己的考研復習情況,能夠找到相對薄弱的知識環(huán)節(jié),重點突破,做到知己知彼。
清晰的學習規(guī)劃對備戰(zhàn)考研數(shù)學是很有效的,熟練掌握重難點題型的解題思路,從而形成標準的思路,進行系統(tǒng)性總結(jié),才能克敵制勝,拿下20__考研數(shù)學。
在考研復習期間,每個人都會做大量的數(shù)學題,但題目的數(shù)量并不是決定勝負的關(guān)鍵,關(guān)鍵在于做題的質(zhì)量。所謂“質(zhì)量”,是指你從一道題中學到了多少知識和解題方法,發(fā)現(xiàn)了多少自身存在的問題,體會到了多少命題的思路和考點。提醒考生,考研數(shù)學復習必須做題,但是不能把做題和基礎(chǔ)知識的復習對立起來。有人認為數(shù)學基本題太簡單,不愿意做,都去做更多更難的題目。但是,如果對理論知識領(lǐng)會不深,基本概念都沒搞清楚,恐怕基本題也做不好,又怎么談得上做更多更難的題目呢?缺乏基本功,盲目追求題目的深度、難度和做題數(shù)量,結(jié)果只能是深的不會做,淺的也難免錯誤百出。
解題的過程也是加深對數(shù)學定理、公式和基本概念的理解和認識的過程。如果在這個過程中出現(xiàn)很多錯誤或沒有解題思路,也就說明你對教材的理解和認識上有很多欠缺、片面甚至錯誤的地方,或是在運用知識的能力方面還很不夠。這時就要抓住他,刨根問底,找出原因:是對定理理解錯了,還是沒有看清題意;是應(yīng)用公式的能力不強,還是自己粗枝大葉,沒有仔細分析等等。找到原因,有針對性地加以改正,就能吃一塹長一智,不必埋怨自己“倒霉”,只要有針對性地加以改正即可。做題最重要的是講求質(zhì)量,所以我們一定要精選精解??佳袛?shù)學復習必須注意考點和題型,二者相輔相成,互相促進提高。如果學生做了某道題目后,便能處理同類的題目,能夠舉一反三,則這道題目就代表了一種題型,其解題方法就有一定的代表性,應(yīng)該精練。當然,能否舉一反三與學生的基礎(chǔ)有關(guān),但學生做一道題后,能否得到很多收獲和提高,卻是題目的代表性和典型性問題。
【本文地址:http://www.zhangqiulvshi.cn/zuowen/1710852.html】